视频突出显示检测是一个至关重要但充满挑战的问题,旨在识别未修剪视频中有趣的时刻。该任务的关键在于有效的视频表示形式共同追求两个目标,即\ textit {i.e。},跨模式表示学习和精细元素特征歧视。在本文中,这两个挑战不仅通过丰富表示建模的模式内部和跨模式关系来应对,而且还以歧视性的方式塑造了这些特征。我们提出的方法主要利用模式内编码和交叉模式共发生编码来完全表示建模。具体而言,编码的模式内模式可以增强模态特征,并通过音频和视觉信号中的模式关系学习来抑制无关的模态。同时,跨模式的共同发生编码着重于同时模式间关系,并选择性地捕获了多模式之间的有效信息。从本地上下文中抽象的全局信息进一步增强了多模式表示。此外,我们使用硬对对比度学习(HPCL)方案扩大了特征嵌入的判别能力。进一步采用了硬对采样策略来开采硬样品,以改善HPCL中的特征歧视。与其他最新方法相比,在两个基准上进行的广泛实验证明了我们提出的方法的有效性和优势。
translated by 谷歌翻译
已经发现,旨在在未修剪视频的开始和终点范围内发现的时间动作实例的时间动作提案生成可以在很大程度上受益于适当的时间和语义上下文的剥削。最新的努力致力于通过自我发项模块来考虑基于时间的环境和基于相似性的语义上下文。但是,他们仍然遭受混乱的背景信息和有限的上下文特征学习的困扰。在本文中,我们提出了一个基于金字塔区域的新型插槽注意(PRSLOT)模块来解决这些问题。我们的PRSLOT模块不使用相似性计算,而是直接以编码器方式来学习本地关系,并基于注意力输入功能(称为\ textit {slot}}的注意力输入功能,生成了局部区域的表示。具体而言,在输入段级级别上,PRSLOT模块将目标段作为\ textIt {query},其周围区域为\ textit {key},然后通过聚集每个\ textit {query-key}插槽来生成插槽表示。具有平行金字塔策略的本地摘要上下文。基于PRSLOT模块,我们提出了一种基于金字塔区域的新型插槽注意网络,称为PRSA-NET,以学习具有丰富的时间和语义上下文的统一视觉表示,以获得更好的建议生成。广泛的实验是在两个广泛采用的Thumos14和ActivityNet-1.3基准上进行的。我们的PRSA-NET优于其他最先进的方法。特别是,我们将AR@100从以前的最佳50.67%提高到56.12%,以生成提案,并在0.5 TIOU下将地图从51.9 \%\%提高到58.7 \%\%\%\%\%,以在Thumos14上进行动作检测。 \ textit {代码可在} \ url {https://github.com/handhand123/prsa-net}中获得
translated by 谷歌翻译
知识蒸馏(KD)在将学习表征从大型模型(教师)转移到小型模型(学生)方面表现出非常有希望的能力。但是,随着学生和教师之间的容量差距变得更大,现有的KD方法无法获得更好的结果。我们的工作表明,“先验知识”对KD至关重要,尤其是在应用大型老师时。特别是,我们提出了动态的先验知识(DPK),该知识将教师特征的一部分作为特征蒸馏之前的先验知识。这意味着我们的方法还将教师的功能视为“输入”,而不仅仅是``目标''。此外,我们根据特征差距动态调整训练阶段的先验知识比率,从而引导学生在适当的困难中。为了评估所提出的方法,我们对两个图像分类基准(即CIFAR100和Imagenet)和一个对象检测基准(即MS Coco)进行了广泛的实验。结果表明,在不同的设置下,我们方法在性能方面具有优势。更重要的是,我们的DPK使学生模型的表现与教师模型的表现呈正相关,这意味着我们可以通过应用更大的教师进一步提高学生的准确性。我们的代码将公开用于可重复性。
translated by 谷歌翻译
视频人群本地化是一项至关重要但又具有挑战性的任务,旨在估算给定拥挤视频中人头的确切位置。为了模拟人类活动性的时空依赖性,我们提出了多焦点高斯邻里注意力(GNA),可以有效利用远程对应关系,同时保持输入视频的空间拓扑结构。特别是,我们的GNA还可以使用配备的多聚焦机制良好地捕获人头的尺度变化。基于多聚焦GNA,我们开发了一个名为GNANET的统一神经网络,以通过场景建模模块和上下文交叉意见模块充分聚合时空信息来准确地定位视频片段中的头部中心。此外,为了促进该领域的未来研究,我们介绍了一个名为VScrowd的大规模人群视频基准,该视频由60k+框架组成,这些框架在各种监视场景和2M+头部注释中捕获。最后,我们在包括我们的SenseCrowd在内的三个数据集上进行了广泛的实验,实验结果表明,所提出的方法能够实现视频人群本地化和计数的最新性能。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译